Pure Aloha Adalah Bahasa Gaul

Pure Aloha Adalah Bahasa Gaul

What is the use of ALOHA?

ALOHA is used to transmit data over a public network channel.

Frequently Asked Questions on Pure ALOHA – FAQs

Maximum Throughput of Pure ALOHA

The maximum throughput occurs when G=0.5

Smax=0.5 × e-1 ≈ 0.184

This means the maximum throughput of Pure ALOHA is approximately 18.4%. In other words, only about 18.4% of the time is used for successful transmissions, and the rest is lost due to collisions.

Throughput of Pure ALOHA

Let 𝑇 be the frame time, i.e. the time required for 1 frame to be transmitted.

Let G be the number of transmission attempts per frame time.

The probability that 𝑘 frames are generated during the frame time is given by the Poisson distribution−

$$P(k)=\frac{G^k e^{-G}}{k!}$$

From this we can say that the probability that 0 frames are generated ( 𝑘k = 0 ) during the frame time is $e^{-G}$.

In case of pure ALOHA, the vulnerable time period so that collision does not occur between two frames is equal to two frame times, i.e. 2T𝑇. In 2T time,average number of transmission attempts is 2G.

The probability that 0 frames are initiated in the vulnerable time period will be −

The throughput, 𝑆, is calculated as the number of transmission attempts per frame time, 𝐺, multiplied by the probability of success, 𝑃(0).

Maximum Throughput of Pure ALOHA

The maximum throughput occurs when G𝐺=0.5.

The maximum throughput is thus−

$S_{max}$𝑎𝑥 = $0.5𝑒e^{-2*0.5}$ = $\frac{1}{2e}= 0.184$

Thus, it can be seen that the maximum throughput is only 18.4% in pure ALOHA.

Get certified by completing the course

The ALOHA protocol was first developed at the University of Hawaii in the early 1970s for packet radio networks. However, it can be used in any situation where multiple devices share a common communication channel. This protocol allows devices to transmit data at any time, without a set schedule. This is known as a random access technique, and it is asynchronous because there is no coordination between devices. When multiple devices attempt to transmit data at the same time, it can result in a collision, where the data becomes garbled. In this case, each device will simply wait a random amount of time before attempting to transmit again. The basic concept of the ALOHA protocol can be applied to any system where uncoordinated users are competing for the use of a shared channel.

ALOHA is an early computer networking method created at the University of Hawaii in the early 1970s. It’s a straightforward way to send data over a shared medium, like a wireless or wired network. The main idea of ALOHA is how it handles collisions, which happen when two devices try to send data at the same time, causing interference.

There are two main versions of the ALOHA protocol:

In this article we going to discuss pure ALOHA in detail.

Vulnerable period for packet A

Pure aloha v/s slotted aloha

Now, let's see the comparison chart between pure aloha and slotted aloha. We are comparing both terms on the basis of characteristics to make the topic more clear and understandable.

From the above discussion, it can be said that slotted aloha is somewhat better than pure aloha. It is because there is less possibility of collision in slotted aloha.

So, that's all about the article. Hope it will be helpful and informative to you.

Plot the characteristic curve of throughput versus offered traffic for a Pure and Slotted ALOHA system

NOTE: NetSim Academic supports a maximum of 100 nodes and hence this experiment can only be done partially with NetSim Academic. NetSim Standard/Pro would be required to simulate all the configurations.

ALOHA provides a wireless data network. It is a multiple access protocol (this protocol is for allocating a multiple access channel). There are two main versions of ALOHA: pure and slotted. They differ with respect to whether or not time is divided up into discrete slots into which all frames must fit.

In Pure Aloha, users transmit whenever they have data to be sent. There will be collisions and the colliding frames will then be retransmitted. In NetSim's Aloha library, the sender waits a random amount of time per the exponential back-off algorithm and sends it again. The frame is discarded when the number of collisions a packet experiences crosses the the "Retry Limit" - a user settable parameter in the GUI.

Let ''frame time'' denotes the amount of time needed to transmit the standard, fixed-length frame. In this experiment point, we assume that the new frames generated by the stations are modeled by a Poisson distribution with a mean of N frames per frame time. If N > 1, the nodes are generating frames at a higher rate than the channel can handle, and nearly every frame will suffer a collision. For reasonable throughput, we would expect 0 \< N \< 1. In addition to the new frames, the stations also generate retransmissions of frames that previously suffered collisions.

The probability of no other traffic being initiated during the entire vulnerable period is given by$\ e^{- 2G}\ $which leads to   $S = \ G \times e^{- 2G}$ where, S is the throughput and G is the offered load. The units of$\ S$ and $G$ is frames per frame time.

G is the mean of the Poisson distribution followed by the transmission attempts per frame time, old and new combined. Old frames mean those frames that have previously suffered collisions.

The maximum throughput occurs at $G = 0.5$, with $S = \frac{1}{2e}$, which is about 0.184. In other words, the best we can hope for is a channel utilization of 18%. This result is not very encouraging, but with everyone transmitting at will, we could hardly have expected a 100% success rate.

In slotted Aloha, time is divided up into discrete intervals, each interval corresponding to one frame. In Slotted Aloha, a node is required to wait for the beginning of the next slot in order to send the next packet. The probability of no other traffic being initiated during the entire vulnerable period is given by  $e^{- G}$ which leads to $S = G \times e^{- G}$. It is easy to compute that Slotted Aloha peaks at G = 1, with a throughput of $s = \frac{1}{e}$  or about 0.368.

What is ALOHA and its type?

ALOHA is a basic method for sending data over a shared network. It was created to manage how data is transmitted and to deal with collisions when two devices send data at the same time.

There are two types of ALOHA:

What is the full form of ALOHA?

The full form of ALOHA is Advocates of Linux Open-source Hawaii Association.

ALOHA is a medium access control (MAC) protocol for transmission of data via a shared network channel. Using this protocol, several data streams originating from multiple nodes are transferred through a multi-point transmission channel. There are two types of ALOHA protocols – Pure ALOHA and Slotted ALOHA.

In pure ALOHA, the time of transmission is continuous. Whenever a station has an available frame, it sends the frame. If there is collision and the frame is destroyed, the sender waits for a random amount of time before retransmitting it.

After transmitting a frame, a station waits for a finite period of time to receive an acknowledgement. If the acknowledgement is not received within this time,the station assumes that the frame has been destroyed due to collision and resends the frame.

A collision occurs if more than one frame tries to occupy the channel at the same time. The situation is depicted in the following diagram−

Difference between Pure aloha and Slotted aloha

In this article, we will discuss the comparison between Pure aloha and Slotted aloha along with their separate discussion. Aloha is the random access protocol having two categories that are pure aloha and slotted aloha.

Pure aloha is used whenever data is available for sending over a channel at stations, whereas slotted aloha is designed to overcome the problem of pure aloha because there is a high possibility of frame hitting in pure aloha. Similarly, we will see the comparison chart between pure aloha and slotted aloha. So, without any delay, let's start the topic.

Before discussing the types of aloha, let's first see a brief description of aloha.

Aloha is designed for wireless LAN (Local Area Network) but can also be used in a shared medium to transmit data. In aloha, any station can transmit data to a channel at any time. It does not require any carrier sensing.

Pure aloha is used when data is available for sending over a channel at stations. In pure Aloha, when each station transmits data to a channel without checking whether the channel is idle or not, the chances of collision may occur, and the data frame can be lost.

When a station transmits the data frame to a channel without checking whether the channel is free or not, there will be a possibility of the collision of data frames. Station expects the acknowledgement from the receiver, and if the acknowledgement of the frame is received at the specified time, then it will be OK; otherwise, the station assumes that the frame is destroyed. Then station waits for a random amount of time, and after that, it retransmits the frame until all the data are successfully transmitted to the receiver.

There is a high possibility of frame hitting in pure aloha, so slotted aloha is designed to overcome it. Unlike pure aloha, slotted aloha does not allow the transmission of data whenever the station wants to send it.

In slotted Aloha, the shared channel is divided into a fixed time interval called slots. So that, if a station wants to send a frame to a shared channel, the frame can only be sent at the beginning of the slot, and only one frame is allowed to be sent to each slot. If the station is failed to send the data, it has to wait until the next slot.

However, there is still a possibility of a collision because suppose if two stations try to send a frame at the beginning of the time slot.